Eine Publikation der Swissprofessionalmedia AG
PDF download
Computersimulation von Empa zeigt wie Bahnlärm entsteht: Ausgabe 09/2019, 31.05.2019

Virtueller Lärm als Basis für reale Abhilfemassnahmen

Eisenbahnlärm stört. Vor allem in der Nähe von Wohngebieten sorgen Züge regelmässig für schlaflose Nächte. Umso wichtiger ist es, Züge und Schienen so zu optimieren, dass Geräusche gedämmt werden. Empa-Forschende haben eine Computersimulation entwickelt, die realitätsgetreu aufzeigt, wie Bahnlärm entsteht und welche technischen Massnahmen zielführend sind, ihn zu verhindern.

Der Zug rauscht heran, der Lärmpegel steigt, es dröhnt unangenehm in den Ohren, wenn die Waggons vorbeirattern. Ein paar Sekunden später ist der Spuk vorbei, die Lautstärke nimmt ab, und die Wagons verschwinden am Horizont. Was auf den ersten Blick wirkt wie die gewöhnliche Aufnahme eines vorbeifahrenden Zuges, ist in Wirklichkeit weit mehr. Weder die Geräusche, die man durch Lautsprecher oder Kopfhörer hört, noch die Bilder, die man sieht, sind echt: Alles entstand im Rahmen einer Simulation am Computer.

Lärm: Ein Ensemble aus über hundert Geräuschquellen
«Lärm besteht aus verschiedenen Bestandteilen», erklärt Dr. Reto Pieren von der EmpaAbteilung «Akustik und Lärmminderung», verantwortlich für die Programmierung der Simulation, die ein Team von Empa-Forschern in einem Horizon2020-Projekt der EU entwickelte. «Die Räder, die Schienen, die Lüftung, der Motor – alles erzeugt Geräusche und verursacht als Ganzes dann die Lärmemission des Zuges.» In anderen Worten: Pieren hat für die über 100 Geräuschquellen eines fahrenden Zuges einzelne Algorithmen entwickelt. Das ermöglicht es, den Zug als Ganzes «hörbar» zu machen oder aber nur einzelne Komponenten.
Nebst den diversen Geräuschquellen eines fahrenden Zuges integrierte er ausserdem Umwelteinflüsse in seine Berechnungen. Dazu gehören Lärmschutzwände, Fahrgeschwindigkeit, Zustand der Gleise, Aussentemperatur und sogar die Beschaffenheit des Bodens. Ziel der Simulation ist es, nicht nur Optimierungspotenzial bestehender Zugkompositionen aufzuzeigen, sondern in Zukunft auch Voraussagen treffen zu können, wie beispielswiese neue Räder oder Bauteile den Lärm einer Bahnlinie verändern würden.

Erschaffen am Computer
Die Simulation der Empa ist laut Dr. Pieren einzigartig, denn bisherige Programme verwenden echte Tonaufnahmen. Pieren jedoch hat die einzelnen Geräusche am Computer hergestellt. Dabei wird für jede Zugkomponente unter Berücksichtigung der physikalischen Parameter das entsprechende akustische Signal berechnet. Physikalische Parameter heisst in diesem Fall Eigenschaften wie die Oberflächenbeschaffenheit und das Material der Gleise und der einzelnen Räder. Diese Grundparameter stammen dabei aus eigenen Messungen, Messungen von Fahrzeugherstellern und Simulationsrechnungen und werden in die Simulation eingespeist. Aus diesen Daten berechnet der Algorithmus den abgestrahlten Schalldruck, aus dem wiederum das Geräusch bei einem bestimmten Zuhörerpunkt simuliert wird. Doch es geht noch komplexer: Beim Rollgeräusch beispielsweise wird das Bremssystem der Wagen mit einberechnet. «Dahinter verbergen sich Datensätze, die die Oberflächenmikrostruktur der Räder beschreiben. So wird für jedes Rad eine individuelle Oberflächenstruktur berechnet», erklärt Pieren. Diese Oberflächenstruktur ist massgeblich an der entstehenden Reibung mit den Geleisen und somit an der Schall- bzw. Lärmentwicklung beteiligt. Je weniger Unebenheiten die Oberfläche der Räder und der Gleise aufweisen, umso leiser das Fahrgeräusch.

Die Schallausbreitung macht den Lärm aus
Ein vorbeifahrender Zug verursacht Lärm, so viel ist klar. Wie ein Anwohner diesen Lärm allerdings wahrnimmt, hängt massgeblich von der lokalen Umgebung und der Schallausbreitung ab. Schall erfährt bei der Ausbreitung diverse Veränderungen. Er wird durch Luft absorbiert, was dazu führt, dass hohe Frequenzen stärker gedämpft werden als tiefe. Ähnliches passiert bei einer Lärmschutzwand: Hohe Frequenzen sind hinter der Wand tatsächlich weniger laut, tiefe Töne werden jedoch über die Wand gebeugt. Diese zentralen Faktoren können in der Simulation ebenfalls nachgestellt werden, ebenso wie der Standort des Zuhörers – von dem die eigentliche akustische Wahrnehmung des Lärms abhängt. Den künstlich erzeugten Lärm hat Pieren mit Probanden in einem Hörexperiment überprüft. Erfreulicherweise zeigte sich, dass die Probanden die Simulationen und die künstlich generierten Geräusche als sehr plausibel einstuften. Mit der Simulation lassen sich also Auswirkungen von unterschiedlichen Massnahmen «auralisieren», also hörbar machen. Beispielsweise lässt Pieren die Simulation laufen, platziert im Anschluss eine Schallschutzwand und lässt erneut einen Zug vorbeifahren. «Wenn wir sagen, eine Massnahme reduziert den Geräuschpegel um drei Dezibel, können sich die wenigsten vorstellen, was das bedeutet. Wenn ich diese drei Dezibel im direkten Vergleich aber hörbar mache, ist der Effekt sofort klar.»

Videos zeigen Vergleichsmessungen
Die Simulation funktioniert nicht nur im Labor oder mit einem Virtual-Reality-Set. Auch Videos auf YouTube zeigen den Vergleich und machen deutlich, was die Simulation leisten kann (siehe Quick-Link). Künftig soll sie helfen, wichtige Entscheidungen bezüglich Bau und Ausbau von Bahnlinien und Zügen zu unterstützen. Davon profitieren langfristig Bahnbetreiber, Planer und vor allem die betroffenen Anwohner.

Quick-Link Lärmsimulationen www.polyscope.ch/2019/empa

 

Infoservice
Empa
Überlandstrasse 129, 8600 Dübendorf
Tel. 058 765 11 11, www.empa.ch

 



Was der Zuhörer als Lärm wahrnimmt, ist in Wahrheit eine Kombination zahlreicher Einzelgeräusche


Die Simulation läuft auch «tragbar» mittels Virtual Reality inklusive Kopfhörer


Im «AuraLab» der Empa kann die Simulation in einem schalldichten Raum an Probanden getestet werden

Kontaktpersonen

Dr. Reto Pieren, Akustik, Lärmminderung,  Tel. 058 765 60 31, reto.pieren@empa.ch
Dr. Jean-Marc Wunderli, Akustik,  Lärmminderung, Tel. 058 765 47 48,  jean-marc.wunderli@empa.ch